14个项目入选国家重点研发计划"可再生能源与氢能技术"

链接:www.china-nengyuan.com/news/162909.html

来源:科技部

14个项目入选国家重点研发计划"可再生能源与氢能技术"

近日,国家重点研发计划"可再生能源与氢能技术" 重点专项2020年度项目公示。公示时间为2020年10月26日至2020年10月30日。

此次共有14个项目入选,例如上海交通大学的《长寿命低成本质子交换膜燃料电池极板专用基材批量化制造技术》 等项目都榜上有名。

以下为原文

关于国家重点研发计划"可再生能源与氢能技术"重点专项2020年度项目安排公示的通知

根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发〔2014〕11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发〔2014〕64号)、《科技部、财政部关于印发<国家重点研发计划管理暂行办法>的通知》(国科发资〔2017〕152号)等文件要求,现对"可再生能源与氢能技术"重点专项2020年度拟立项项目信息进行公示(详见附件)。

公示时间为2020年10月26日至2020年10月30日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署名真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:

联系人:朱卫东

电子邮件:zwd@htrdc.com

科技部高技术研究发展中心 2020年10月26日

附件

链接:www.china-nengyuan.com/news/162909.html

来源:科技部

国家重点研发计划"可再生能源与氢能技术"重点专项 2020 年度拟立项项目公示 清单

序 号	项目名称	项目牵头承担单位	项目实施周期 (年)
1	车用耐高温低湿质子膜及成膜聚合物批量制 备技术	上海交通大学	3
2	碱性离子交换膜制备技术及应用	中国科学技术大学	2.2
3	扩散层用低成本炭纸批量制备及应用技术	吉林精功碳纤维有限公司	3
4	高性能/抗中毒车用燃料电池催化剂的合成 技术与批量制备	厦门大学	3
5	长寿命低成本质子交换膜燃料电池极板专用 基材批量化制造技术	上海交通大学	3
6	车用燃料电池堆及空压机的材料与部件耐久 性测试技术及装备研究	中国汽车工程研究院股份有 限公司	3
7	公路运输用高压、大容量管束集装箱氢气储 存技术	合肥通用机械研究院有限公 司	3
8	液氢制取、储运与加注关键装备及安全性研 究	北京中科富海低温科技有限 公司	3
9	醇类重整制氢及冷热电联供的燃料电池系统 集成技术	华中科技大学	3
10	万小时工作寿命的钙钛矿太阳电池关键技术	中国科学院半导体研究所	4
11	高效、低成本晶体硅太阳电池关键技术研究	江苏协鑫硅材料科技发展有 限公司	3
12	新型高效风能转换装置关键技术研究	中国华能集团清洁能源技术 研究院有限公司	3
13	大型柔性叶片气动弹性设计关键技术	国电联合动力技术有限公司	3
14	可离网型风/光/氢燃料电池直流互联与稳定 控制技术	国网浙江省电力有限公司	3

原文地址: http://www.china-nengyuan.com/news/162909.html