1 基本原理
1.1 原料脱硫
脱硫分两步进行:原料气中有机硫化物的加氢转化反应,硫化氢的脱除。
在一定温度、压力下,原料气通过钴钼加氢催化剂,将有机硫转化成无机硫;原料经过有机硫转化后,再通过氧化锌脱硫剂,将原料气中的H2S脱至0.2ppm以下,以满足蒸汽转化催化剂对硫的要求,其主要反应(以硫醇和噻酚为例)为:
1.2 烃类的蒸汽转化
烃类的蒸汽转化是以水蒸汽为氧化剂,在镍催化剂的作用下将烃类物质转化,得到制取氢气的原料气。这一过程为吸热过程,故需外供热量,转化所需的热量由转化炉辐射段提供。
1.3 一氧化碳变换
转化气温度在~360oC进入变换炉,在高变催化剂的作用下,一氧化碳与水蒸气发生变换反应。
CO变换反应为放热反应,低温对变换平衡有利,可得到较高的CO变换率,进而可提高单位原料的产氢量。为简化工艺流程,节省投资,通常天然气转化制氢只采用一段变换。
1.4 变压吸附装置提纯氢气基本原理
吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体)称为吸附质。
变压吸附氢提纯装置中的吸附主要为物理吸附。物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行得极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。
变压吸附提氢工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的***个性质,可实现对含氢气源中杂质组分的优先吸附而实现氢提纯的目的;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续提氢的目的。
工业PSA装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类。吸附剂***重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。
对于组成复杂的气源,在实际应用中常常需要多种吸附剂,按吸附性能依次分层装填组成复合吸附床,才能达到分离所需产品组分的目的。