链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

基于化学动力学的生物质颗粒燃烧排放NO特性模拟与验证

刘婷洁,张学敏,林超群,李俊韬

(中国农业大学工学院,北京100083)

摘要:为研究生物质颗粒燃料燃烧NO排放规律及其生成机理,采用CFD和ChemKin联合仿真,建立试验锅炉燃烧筒CFD网络模型,应用ChemKin接口导入简化的17组分58基元反应机理,建立ChemKin-

PSR反应模拟网络,选用Reaction DesignC2_NOx详细机理,对棉秆、玉米秸秆、木质3种生物质颗粒NO排放进行模拟。结果表明,NO生成量:棉秆>玉米秸秆>木质;NO排放量随过量空气系数的增加先增大后减小,在过量空气系数为1.7附近达到峰值。将模拟结果与试验结果进行比较,证明了模型和化学反应机理的正确性,为生物质燃料燃烧NO排放的预测与控制提供参考。

0引言

生物质能源因其对CO 2

零贡献,且挥发分较煤高,N、S、灰分和固定炭含量较煤低 $^{[1]}$,作为替代化石燃料的可持续能源,其应用日益广泛 $^{[2\text{-}7]}$

- 。但其巨大消耗量也会导致NO的排放剧增^[8]
- 。NO会伤害人的呼吸器官,造成酸雨,破坏臭氧层等。因此,针对生物质颗粒燃料的NO排放特性愈发成为研究热点。

国内外对生物质燃料NO排放试验研究工作开展较多,赵欣等[9]在生物质燃烧试验平台上研究了3种生物质固体燃料在不同负荷和进气量下燃烧的NO排放,结果发现,NO的排放量随负荷增加而增加,随进气量增加而减少。Lunbo Duan等^[10]

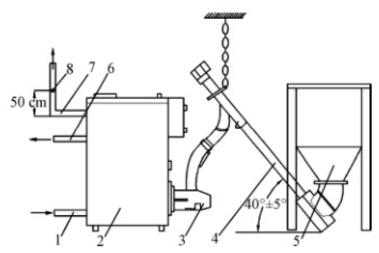
[11],张鹤丰^[12],Maryori Díaz-Ramírez^[13],Murari MohonRoy^[14],Evelyn Cardozo^[15],Gerhard Stubenberger^[16],Takero Nakahara^[17]

等均针对不同生物质燃料NO排放进行了试验研究,然而试验研究花费大、周期长,且不能直接解释NO生成机理,因此,采用数值模拟方法研究生物质燃料燃烧NO排放规律及其生成机理显得十分必要^[18]。

国内外有关燃料燃烧过程中NO转化机理的研究比较广 污^[19-25]

,而针对生物质燃料燃烧的并不多。本文采用CFD和ChemKin联合仿真,对生物质颗粒燃料NO排放特性和机理进行研究。ChemKin是由美国Sandia国家实验室开发的大型气相化学反应动力学软件,是燃烧领域普遍使用的模拟计算工具[26]。本文首先对所选燃烧器在Fluent中进行网络建模,结合化学反应机理得到燃烧器温度场和气流速度场,然后根据相关参数在ChemKin中建立适当的反应器网络模型,对3种生物质颗粒燃料燃烧的气相反应进行模拟仿真,得到NO的排放规律,并用试验结果加以验证。

1模型建立


1.1Fluent建模及网格划分

本文所采用的试验装置如图1所示,燃料器选用Pellet Biocontrol20型生物质燃料器。

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

- 1.进水管 2.锅炉 3.燃烧器 4.进料机构 5.料仓 6.出水管 7.排烟管道 8.烟气/烟尘采样孔
- Inlet pipe 2. Boiler 3. Burner 4. Feeding mechanism 5. Silo 6. Outlet pipe 7. Exhaust pipe 8. Fume/dust sampling openings

图 1 试验装置

Fig.1 Test unit

试验所用燃烧器是一种顶置喂料式成型颗粒燃烧器,其额定燃烧功率在木质燃料工质下标定为20kW(满载),通过风机来控制配风量。试验中采用木质颗粒、玉米秸秆颗粒、棉秆颗粒3种燃料。表1为3种生物质的挥发分组分的摩尔(体积)分数^[27]

 3 / $h^{[28]}$ 。各燃料工业分析、每千克各燃料完全燃烧所需的理论空气量TAV(theoretical air volume)和理论烟气量如表2所示,具体计算可参考文献[29]。

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

表 1 生物质挥发分组分

Table 1 Biomass volatile components

				_		
生物质 Biomass	H_2	CH ₄	C_2H_4	C_2H_6	CO_2	CO
棉秆 Cotton stalk/%	35	9.5	3.7	0.1	23.7	28
玉米秸秆 Corn straw/%	24.2	16.2	5.4	0.5	19.3	34.4
木质 Wood/%	17.3	15.7	7	0.3	9.6	50

注:数据来源文献[27]。

Note: Data were cited from reference[27].

表 2 3 种燃料的理论烟气量

Table 2 Theoretical flue gas of three fuels

生物质 Biomass	C _{ad} /%	H _{ad} /%	O _{ad} /%	N _{ad} /%	S _{ad} /%	空气量 Theoretical air volume/ (m ³ ·kg ⁻¹)	理论烟气量 Theoretical flue gas volume/(N·m³)
木质 Wood	49.35	7.98	33.75	0.13	0.42	5.38	5.73
玉米秸秆 Corn straw	40.47	7.00	32.18	0.92	0.43	4.39	4.76
棉秆 Cotton stalk	40.77	7.04	33.58	1.16	0.50	4.38	4.77

利用Fluent对燃烧筒结构进行三维建模、网格划分(如图2所示)及边界条件设置。在Mesh中划分三维模型的网格时,对流体区域分别选择四面体和六面体混合网格,通过Sweep、Patch、Conforming、Sizing、Inflation等方法来进行划分;在结构细小处,对网格进行加密以获得较好的网格质量。最终网格数为362782,节点数为65584,平均网格畸变度为0.233,最大网格畸变度为0.81,网格质量较好。求解设置EDC涡耗散有限速率化学反应模型,使用详细阿累尼乌斯化学动力学机理,燃烧过程湍流模拟采用Reynolds平均法(RANS)k-双方程模型。组分输运模型选用species transport,该模型可以由用户自定义反应机理。

图 2 燃烧筒网格划分示意图

Fig.2 Combustion cylinder mesh division schematic

1.2 NOx化学机理的选取

NO _x详细排放机理选用ChemKin中Reaction Design发展的的C2_NO_x机理。C2_NO_x

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

压力相关机理

包括99个反应组分和694个

基元反应, 在较宽反应域下详细描述了碳氢化合物的

氧化和NOx

的机理。应用于CFD计算的化学反应机理要进行大量的简化,反应机理的简化要求对于给定的精度保证描述燃烧准确性,省略对燃烧过程没有明显影响的组分和基元反应,减少仿真运算量,因此采用敏感性分析法简化得到17组分58基元反应机理(见表3)。

链接:www.china-nengyuan.com/tech/107799.html 来源:新能源网 china-nengyuan.com

表 3 17 组分 58 基元反应机理

Table 3 17 components and 58 primitive reactions mechanism

- 1401	e 5 17 components c			
序号	反应式	指前因子	温度指数	活化能
No.		Pre-exponential	Temperature	Activation
NO.	Chemical equation	factor	exponent	energy
1	CH ₃ +H+M=CH ₄ +M	8.00E+26	-3	0
2	$CH_4+O_2=CH_3+HO_2$	7.90E+13	0	56 000
2				
3	CH ₄ +H=CH ₃ +H ₂	2.20E+04	3	8 750
4	$CH_4+O=CH_3+OH$	1.60E+06	2.4	7 400
5	$CH_4+OH=CH_3+H_2O$	1.60E+06	2.1	2 460
6	$CH_3+O=CH_2O+H$	6.80E+13	0	0
7	$CH_3+OH=CH_2O+H_2$	1.00E+12	0	0
8	$CH_3+OH=CH_2+H_2O$	1.50E+13	0	5 000
9	$CH_3+H=CH_2+H_2$	9.00E+13	0	15 100
10	$CH_2+H=CH+H_2$	1.40E+19	-2	0
11	CH ₂ +OH=CH ₂ O+H	2.50E+13	0	0
12	$CH_2+OH=CH+H_2O$	4.50E+13	0	3 000
13	$CH+O_2=HCO+O$	3.30E+13	0	0
14	CH+O=CO+H	5.70E+13	0	0
15	CH+OH=HCO+H	3.00E+13	0	0
16	CH+CO2=HCO+CO	3.40E+12	0	690
17	CH ₂ +CO ₂ =CH ₂ O+CO	1.10E+11	0	1 000
18	CH ₂ +O=CO+H+H	3.00E+13	Ö	0
19	CH ₂ +O=CO+H ₂	5.00E+13	0	0
20	$CH_2+O_2=CO_2+H+H$	1.60E+12	0	1 000
21	$CH_2+O_2=CH_2O+O$	5.00E+13	0	9 000
22	$CH_2+O_2=CO_2+H_2$	6.90E+11	0	500
23	$CH_2+O_2=CO+H_2O$	1.90E+10	0	-1 000
24	$CH_2+O_2=CO+OH+H$	8.60E+10	0	-500
25	CH ₂ +O ₂ =HCO+OH	4.30E+10	0	-500
26	CH ₂ O+OH=HCO+H ₂ O		1.2	-447
	-	3.43E+09		
27	CH ₂ O+H=HCO+H ₂	2.19E+08	1.8	3 000
28	$CH_2O+M=HCO+H+M$	3.31E+16	0	81 000
29	CH ₂ O+O=HCO+OH	1.81E+13	0	3 082
30	HCO+OH=CO+H2O	5.00E+12	0	0
31	HCO+M=H+CO+M	1.60E+14	0	14 700
32	HCO+H=CO+H ₂	4.00E+13	0	0
33	$HCO+O=CO_2+H$	1.00E+13	0	0
34	$HCO+O_2=HO_2+CO$	3.30E+13	-0.4	0
	(A)			
35	$CO+O+M=CO_2+M$	3.20E+13	0	-4 200
36	$CO+OH=CO_2+H$	1.51E+07	1.3	-758
37	$CO+O_2=CO_2+O$	1.60E+13	0	41 000
38	$HO_2+CO=CO_2+OH$	5.80E+13	0	22 934
39	$H_2 + O_2 = 2OH$	1.70E+13	0	47 780
40	$OH + H_2 = H_2O + H$	1.17E+09	1.3	3 626
41	$H+O_2=OH+O$	5.13E+16	-0.8	16 507
42				8 826
	$O+H_2=OH+H$	1.80E+10	1	
43	$H+O_2+M=HO_2+M$	3.61E+17	-0.7	0
	H_2O	Enhanced	1.86E+01	
	CO_2	Enhanced	4.20E+00	
	H_2	Enhanced	2.86E+00	
	CO	Enhanced	2.11E+00	
	N_2	Enhanced	1.26E+00	
44	$OH+HO_2=H_2O+O_2$	7.50E+12	0	0
45	H+HO ₂ =2OH	1.40E+14	0	1 073
46	$O+HO_2=O_2+OH$	1.40E+13	0	1 073
47	$2OH=O+H_2O$	6.00E+08	1.3	0
48	$H+H+M=H_2+M$	1.00E+18	-1	0
49	$H+H+H_2=H_2+H_2$	9.20E+16	-0.6	0
50	H+H+H ₂ O=H ₂ +H ₂ O	6.00E+19	-1.2	0
51	$H+H+CO_2=H_2+CO_2$	5.49E+20	-2	0
52				0
32	H+OH+M=H ₂ O+M	1.60E+22	-2 5.00F+00	U
	H_2O	Enhanced	5.00E+00	102
53	H+O+M=OH+M	6.20E+16	-0.6	0
	H_2O	Enhanced	5.00E+00	
54	$H+HO_2=H_2+O_2$	1.25E+13	0	0
55	$HO_2+HO_2=H_2O_2+O_2$	2.00E+12	0	0
56	$H_2O_2+M=OH+OH+M$	1.30E+17	0	45 500
			0	
57	$H_2O_2+H=HO_2+H_2$	1.60E+12		3 800
58	$H_2O_2+OH=H_2O+HO_2$	1.00E+13	0	1 800

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

应用ChemKin接口将17组分骨架机理导入Fluent中,得到玉米秸秆在入口气流速度为6m/s时温度场的模拟结果如图3所示。

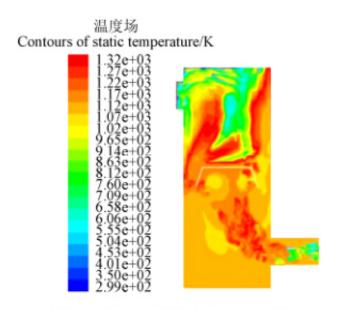


图 3 Fluent 模拟温度场云图

Fig.3 Temperature field cloud picture simulated by Fluent

图3表明整个温度场

最高温度为1320K,略高干试验测得燃烧器

出口的炉膛测试平均温度1293K^[28]

,但在可接受范围内,这与模型假设中忽略固定碳气化等吸热反应过程的模型设置有关。图中所示的温度场分布与实际情况相符,高温区主要集中于火帽下方火焰峰面,这是因为火帽的存在使得该处的压力较大,同时会产生的回流也会使局部温度较高。将ChemKin中的反应机理导入Fluent中,求解计算得到的模拟结果在一定程度上体现了真实的燃烧情形。

1.3 ChemKin网络模拟仿真

通过DSMOKE模块导出CFD仿真结果的混合区体积和滞留时间参数,依据Fluent仿真得到的结果,将参数输入到ChemKin参数设置表中,作为机理反应模型的初始条件,具体参数见表4所示。问题类型选用Constrain Pressure and Solve Energy Equation (Default),化学当量比为1.0、压力为1atm、温度为1400K。在ChemKin中建立简化的理想均相反应器网络,整个网络结构如图所示。

图中共有6个PSR(perfectly stirred reactor)反应器,编号为1~6,1个一维柱塞流反应器PFR(plug flow reactor)用来模拟排气管道。反应器1到6分别对应于燃烧筒的6个反应区域,如图4b所示,反应器1为入口区域,反应器2为固相混合区,反应器3为气相混合区域,反应器4为火帽上方燃烧区域,反应器5为火帽下方回流区域,反应器6为燃烧筒出口及其后方区域。

链接:www.china-nengyuan.com/tech/107799.html

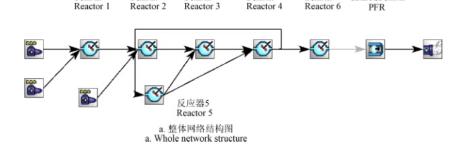

来源:新能源网 china-nengyuan.com

表 4 参数设置表

Table 4 Figure of parameter setting table

反应器特性 Reactor property				反应器 4 Reactor4		
持续时间 Residence time/s	0.05	0.05	0.05	0.2	0.05	0.05
温度 Temperature/K	800	1050	1250	1400	1450	1200
压力 Pressure/atm	1.002	1.002	1.003	1.005	1.008	1.002

反应器4

反应器3

反应器6
Reactor 6
反应器4
Reactor 4

反应器5
Reactor 5
反应器3
Reactor 3
反应器2
Reactor 2

Reactor 1

b. 燃烧区域分布图
 b. Combustion zone distribution

图 4 反应器网络结构图

反应器6

柱塞流反应器

Fig.4 Reactor network structure

2模拟结果分析

2.1各反应器的NO分布

反应器1

反应器2

图5a为在4kg/h进料速度、过量空气系数 =1.5 (25m ³

/h)下的玉米秸秆组分输入,各PSR反应器的CO、 O_2 、 CO_2

组分摩尔分数

分布。O2含量在反应器1、2

、3中一直处于高浓度水平,因为这些区域燃烧并不剧烈

, O₂

消耗量较少,在区域3以后,燃烧反应充分,

O2含量迅速下降,同时CO₂

量迅速增加,此时CO生成量在反应器中降到最低点。CO2和O2随后保持水平,达到动态平衡,是燃烧稳定的区域。

反应器网络NO的含量变化如图5b所示。在反应器1到3中,燃烧温度较低,气体挥发分的滞留时间较短,所以生成的NO量很少;而反应器4以后,燃烧充分,温度升高, O_2

被大量的消耗,使得NO浓度大幅度上升,但因为温度低于1500K,即热力型NO的生成条件,又由于快速型NO的权重在3种NO中较低,所以此时主要是 O_2

与生物质燃料中的N元素发生氧化反应生成燃料型NO。从该曲线图中可以很好的预测NO生成的主要区域,为提出降低NO的措施提供了理论的依据。

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

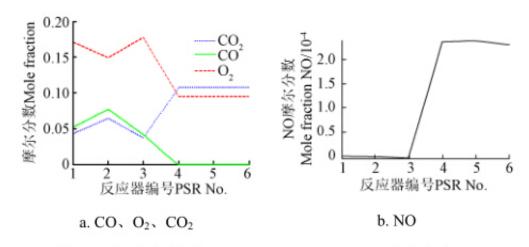


图 5 各反应器中 CO、O2、CO2、NO 的浓度分布

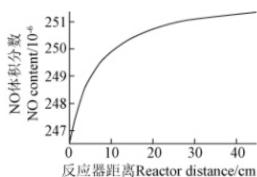
Fig.5 CO, O2, CO2, NO mole fraction of each reactor

2.2不同燃料的NO排放对比

对玉米秸秆、棉

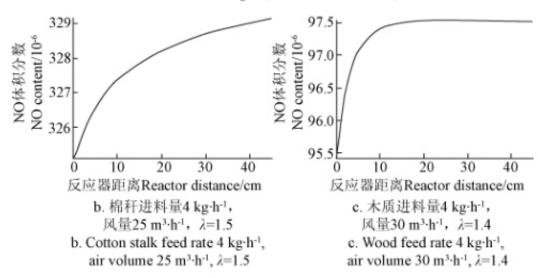
秆颗粒燃料在进料量为4kg/h、风量25

m3/h、过量空气系数为1.5,木质风量30m3


/h、过量空气系数为1.4三种工况下燃烧,对模拟烟气管道PFR反应器中NO排放模拟结果处理,得到的结果如图6所示。

对比3种颗粒燃料可以发现,木质燃料NO达到峰值的距离最短,速度最快,而棉秆最慢。在生成量方面,因为燃烧温度都在1500K以下,且空气量充足,所以生成的NO主要是燃料型NO,3种颗粒燃料的N元素含量由高到低以此为棉秆、玉米秸秆、木质颗粒,因此棉秆的生成量大于玉米秸秆大于木质颗粒。三者的工业分析数据显示,棉秆和玉米秸秆的灰分量较高^[27]

,导致其NO达到峰值速度相对较慢,但从生成量的变化量上来看,三者增值仅为5e-6左右,并不明显。


链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

a. 玉米秸秆进料量4 kg·h⁻¹,风量25 m³·h⁻¹,λ=1.5

a. Corn stalk feed rate 4 kg·h⁻¹, air volume 25 m³·h⁻¹, λ=1.5

注: λ 为过量空气系数。

Note: λ is excess air coefficient.

图 6 3 种生物质颗粒的 NO 排放曲线

Fig.6 NO emissions curve of three biomass pellet fuels

图6的模拟结果与试验结果 [28]

进行对比,如表5所示。对比试验结果数据,其中玉米秸秆和木质的结果较为一致,但棉秆的预测结果有6%的偏差, 这可能同燃料N中具体

的存在形式相关。在挥发分析出的过程中,挥

发分氮主要以HCN和NH3形式析出,而本文参考Faravellie的研究用HCN替代燃料中的挥发分N。

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

表 5 3 种生物质颗粒燃料 NO 排放模拟值与试验值对比表

Table 5 Contrast table of simulation value and experiment value of three biomass pellet fuels NO emissions

P					
生物质	过量空气系数	NO 试验值 ^[28]	NO 模拟值	相对误差	
Biomass	Excess air	Experiment	Simulation	Relative	
Diomass	coefficient λ	value/10 ⁻⁶	value/10 ⁻⁶	error/%	
玉米秸秆	1.5	250	251	2.7	
Corn straw	1.5	258	251	2.7	
棉秆	1.5	250	220		
Cotton stalk	1.5	350	329	6.0	
木质 Wood	1.4	96	98	2.1	
715/94 W 00th	1.7	70	76	2.1	

由表5可知,在相同的燃烧器负荷和相同空气流速下3种燃料的NO平均排放值可以发现,木质颗粒的NO排放最低,棉秆颗粒的最高,玉米秸秆颗粒介于二者之间。

这是因为,在14

00K温度下HCN向NO的转化路径是

- : HCN+M H+CN+M, HCN+OH CN+H₂
- O, CN+O NO+C, HCN+OH HOCN+H, HNCO+O2 NCO+HO2
- 、NCO+O NO+CO、HNC+O NH+CO等一系列反应。CO主要通过反应NCO+O NO+CO影响NO生成,从平衡常数判断,较低的CO浓度可促进反应向正方向进行; H_2 主要通过反应 H_2 +OH H_2 O+H产生H基作用于C H_2
- +NO H+HNCO , 使得NO的上升 ;

N元素含量高以及高温也会导致高NO生成^[8]

。通过分析棉秆的输入组分,CO相对含量低,H。

相对含量高,在自身元素分析中N的质量分数是三者中最高,而且与玉米秸秆颗粒相比较,棉秆颗粒的燃烧温度1283 K要高于玉米秸秆的燃烧温度1259K,因此棉秆NO的排放量是3种燃料中最高的。

2.3不同风量的NO排放对比

对于玉米秸秆,在4kg/h进料速度的工况下,设置不同的过量空气系数(空气质量流率),范围为1.3~2.0,步长为0.1,得到反应网络系统出口处NO的分布。如图7所示,随着当量比的增加,NO的排放出现较快增长,在过量空气系数1.7附近,模型模拟值出现最高排放,随后NO的排放随过量空气系数的增加开始下降,过量空气系数的变化带来燃料过程中氧浓度的变化,在 1.7前对NO的生成有较明显促进,这之后对NO的影响不显著,同时过量空气的稀释效应一定程度降低了NO的体积分数,但对NO的绝对生成量无贡献。

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

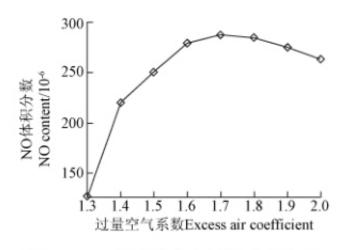


图 7 NO 排放随空气过量系数变化

Fig.7 NO emissions change with excess air coefficient

将模拟结果与已有试验结果^[28]进行对比,如表 6 所示,对于测定试验数据,模拟结果偏差均不大。

表 6 3 种过量空气系数下 NO 排放模拟值与试验值对比表 Table 6 Contrast table of simulation value and experiment value

of NO emissions under three excess air coefficient

过量空气系数 Excess air coefficient λ	NO 试验值 ^[28] Experiment value/10 ⁻⁶	NO 模拟值 Simulation value/10 ⁻⁶	相对误差 Relative error/%
1.5	258	251	2.7
1.7	287	290	1.0
2.0	261	263	0.8

过量空气系数是通过进气量增加而增大的,当 从1.5变为1.7时,燃烧更加充分,O2随进气量而增多;再继续增大进气量,空气流速增加使得混合气体在炉膛内的滞留时间变短,同时对NO有所稀释,因而其浓度降低。

需要说明的是,不管模拟结果或是试验数据NO排放值均较高,这除了与燃料自身性质有关外,燃烧器的结构对其排放也有很大影响。张永亮^[30]

对包括本文研究的PB-20型燃烧器在内的3种燃烧器排放进行了测试,结果表明本文选用的燃烧器NO结果较高。燃烧器结构会影响燃烧参数,从而影响排放。利用本文机理结果,可针对不同的燃烧器进行模拟研究其排放,从而大大缩减燃烧器的设计和改进过程。这部分相关原理和模拟研究应成为今后研究方向。

3结论

- 1)根据Fluent对燃烧筒仿真结果在ChemKin中建立了PSR等离子体管流反应器模型,对NO排放的化学过程进行反应动力学模拟。
- 2)结果显示各反应器NO浓度分布与温度分布和CO、O₂、CO₂ 各组分分布有直接关系,NO主要生成在反应器4之后,且为燃料型NO。
- 3)将不同生物质成型燃料NO排放的模拟结果与试验结果进行对比,两者得出相同的变化趋势,棉秆成型颗粒的结

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

果有6%的偏差,玉米秸秆和木质的结果较为符合。

- 4)不同过量空气系数下的玉米秸秆模拟结果表明:在过量空气系数为1.7附近时,燃烧产生的NO排放最高,体积分数为 290×10^{-6} ;模拟结果与试验结果较为吻合。
- 5)验证了选用ReactionDesign的C2_NO x 机理进行CFD和ChemKin联合仿真,可实现生物质颗粒燃料NO排放预测,并具有较好的精确性。

[参考文献]

- [1]罗娟,侯书林,赵立欣,等.生物质颗粒燃料燃烧设备的研究进展[J].可再生能源,2009,27(12):90-95.
- [2]田红,廖正祝.农业生物质燃烧特性及燃烧动力学[J].农业工程学报,2013,29(10):203-212.
- [3]张永亮,赵立欣,姚宗路,等.生物质固体成型燃料燃烧颗粒物的数量和质量分布特性[J].农业工程学报,2013,29(19):185-192.
- [4] Matti Parikka. Global biomass fuel resources [J]. Biomass and bioenergy, 2004, 27(6): 613 620.
- [5]陈汉平,李斌,杨海平,等.生物质燃烧技术现状与展望[J].工业锅炉,2009(5):1-7.
- [6] Demirbas A. Combustion characteristics of different biomass fuels[J]. Progress in Energy and Combustion Science, 2004, 30(2): 219 230.
- [7]姚宗路,吴同杰,赵立欣,等.生物质成型燃料燃烧挥发性有机物排放特性试验[J].农业机械学报,2015,45(10):135-240.
- [8] Williams A , Jones J M , Ma L , et al. Pollutants from the combustion of solid biomass fuels [J]. Progress in Energy and Combustion Science , 2012 (38): 113 137.
- [9]赵欣,李慧,胡乃涛,等.生物质固体成型燃料燃烧的 NO和 CO 排放研究[J].环境工程,2015,33(10):50-54.
- [10] Lunbo Duan, Yuanqiang Duan, Changsui Zhao, et al. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor [J]. Fuel, 2015, 150(15): 8 13.
- [11] Winter F, Wartha C, Hofbauer H, et al. NO and N2O formation during the combustion of wood, straw, malt waste and peat[J]. Bioresour Technol, 1999, 70(1): 39 49.
- [12]张鹤丰.中国农作物秸秆燃烧排放气态、颗粒态污染物排放特征的实验室模拟[D].上海:复旦大学,2009.
- [13] Maryori Díaz-Ramírez, Fernando Sebastián, Javier Royo, et al. Influencing factors on NOx emission level during grate conversion of three pelletized energy crops[J]. Appl Energy, 2014, 115(4): 360 373.
- [14] Murari Mohon Roy, Kenny W. Corscadden. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove [J]. Applied Energy, 2012, 99: 206 212.
- [15] Evelyn Cardozo , Catharina Erlich , Lucio Alejo , et al. Combustion of agricultural residues: An experimental study for small-scale applications [J]. Fuel , 2014 , 115: 778 787.
- [16] Gerhard Stubenberger, Robert Scharler, Selma Zahirovic, et al. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models [J]. Fuel, 2008, 87:793 806.
- [17] Takero Nakahara , Hui Yan , Hiroyuki Ito. Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow[J]. Proceedings of the Combustion Institute , 2015 , 35: 2415 2422.

链接:www.china-nengyuan.com/tech/107799.html

来源:新能源网 china-nengyuan.com

[18] Capucine Dupont, Guillaume Boissonnet, Jean-Marie Seiler. Study about the kinetic processes of biomass steam gasification [J]. Fuel, 2007, 86: 32 - 40.

[19]徐德厚,周月桂,金旭东,等.O2/CO2气氛下甲烷燃烧中NOx转化过程的CHEMKIN模拟[J].锅炉技术,2015,46(3):75-79.

[20]丛晶,周月桂,徐德厚,等.O2/CO2气氛下煤粉燃烧中NOx转化机理的CHEMKIN模拟[J].锅炉技术,2015,46(5):63-67.

[21]赵然,刘豪,胡翰,等.O2/CO2气氛下甲烷火焰中NO均相反应机理研究[J].中国电机工程学报,2009(20):52-59.

[22] Hirotatsu Watanabe , Jun-ichiro Yamamoto , Ken Okazaki , et al. NOx formation and reduction mechanisms in staged O2/CO2combustion[J]. Combustion and Flame , 2011 , 158(7):1255 - 1263.

[23]Okazaki K , Ando T.NOx reduction mechanism in coal combustion with recycled CO2 [J].Energy , 1996 , 22(2):207 - 215.

[24]Zhao Ran, Liu Hao, Hu Han, Zhong Xiaojiao, et al. Experimental and modeling study of NO emission under high CO2concentration [J]. Science China, 2010, 53(12): 3275 - 3283.

[25] Vincent Fichet, Mohamed Kanniche, Pierre Plion, et al. A reactor network model for predicting NOx emissions in gas turbines [J]. Fuel, 2010, 89: 2202 - 2210.

[26]董刚,蒋勇,陈义良,等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用[J].火灾科学,2000,9(1):27-33.

[27] Demirbas A.Biorefineries: current activities and future developments energy convers[J]. Manage , 2009 , 50(11):2782 - 2801.

[28]赵欣.生物质成型燃料气态排放物特性研究[D].北京:中国农业大学,2015.

[29]李鑫华.生物质颗粒燃料燃烧炉的优化设计[D].北京:北京工业大学,2011.

[30]张永亮.生物质固体成型燃料颗粒物排放特性研究[D].北京:中国农业大学,2014.

原文地址: http://www.china-nengyuan.com/tech/107799.html