太阳能路灯的功率装配

链接:www.china-nengyuan.com/tech/129930.html

来源:云南星捷科技

太阳能路灯的功率装配

太阳能照明设计指南第5部分是关于确定功率组件。现在,通过确定项目的管腔要求以及所需的操作概况,您已经 知道了您需要的覆盖范围,现在是确定需要什么样的太阳能组件的时候了。这是由收集了一些额外信息后的简单计算 确定的。

太阳能组件尺寸

步骤1-取夹具的瓦特数,除以12,以确定操作该夹具1小时所需的放大器。除以12,因为太阳能系统通常是12 VDC;然而,有些是24 VDC,但这个公式最终仍将正确计算。

步骤2-将固定装置安培乘以每晚的操作时数,可为你提供每晚所需的总耗电量。如果需要从黄昏到黎明,知道一年中最长的夜晚的时间是如何决定的。佛罗里达冬天有大约13.25个小时的夜晚,纽约有14.5个小时的夜晚。分裂时间或黄昏后的x小时数也可以用来确定。在处理议案时,平均运作多少小时是计算出来的。

步骤3-将需要由单一太阳能组件供电的固定装置总数所需的总安培数乘以。如果电力系统上只有一个夹具,那么您可以跳过这个步骤。然而,也有一些应用程序,如标牌、灯柱或景观照明,其中多个固定装置都是在一个单一的设备上使用的。太阳能组件.

步骤4-加20%。这样做的原因是为了确保该系统在未来数年内能够按照承诺运行。随着太阳时代的到来,电能的产生会慢慢退化。大约25年后,电力比原来的生产性能下降了大约20%。

步骤5-除以你所在地区冬季可用的太阳时数。这可以在网上找到,并通过查看当地的NSOL指南。记住要考虑冬季的可用性,而不是每年的平均水平,因为除非在最坏的情况下,否则系统不会在一年的不同时间运行相同的设备。

步骤6-确定需要多大的动力总成。每个功率组件提供一个不同的放大器电流和系统需要提供什么是需要。例如,我们的SEPA 100每小时提供5.46+/-安培,在纽约最多提供11安培,在佛罗里达提供24安培,冬天只需一天。

电池组装尺寸

步骤7-通过将每晚所需的安培数乘以所需的备份天数来确定电池组装尺寸。在大多数应用中,我们提供的最小自主度为5;然而,越北,由于在寒冷的天气中电池的放电深度发生变化,这种情况就越多。

了解所有这些因素都会影响或破坏一个系统,以及为什么在需要可靠的系统设计时不使用"现成"系统。每个系统都应针对具体的项目要求而设计,了解上述所有步骤将允许运行25年以上的可靠系统设计。

原文地址: http://www.china-nengyuan.com/tech/129930.html