宁波材料所在可燃冰开发方面取得新进展

链接:www.china-nengyuan.com/tech/130320.html

来源:宁波材料技术与工程研究所

宁波材料所在可燃冰开发方面取得新进展

随着生态环境的恶化以及能源的短缺,开发清洁环保的新能源成为建设可持续发展社会的迫切需要,而笼型水合物 在新型清洁能源开发、能源储存、温室气体捕获和气体分离等领域具有巨大的应用前景。

笼型水合物是在一定温度和压力等条件下由水(冰)和气体分子形成的非化学计量的、具有笼状结构的类冰固体化合物,是通过将气体分子笼络在由氢键所构成的水笼子内,具有稳定的晶体结构。人们在深海和冻土带发现巨大的天然气水合物(可燃冰),所含的天然气总量约有1.1万亿吨,约是其它化石燃料储量总和的两倍。如此巨大的能源储量是21世纪具有良好前景的后续能源,早已成为人们的潜在开采目标和新型能源的热门研究对象。另外,二氧化碳温室气体的有效捕获和

长期安全储存是人类面临的一个重大环境

挑战。近年来,研究人员提出CO₂促进CH₄开采技术概念,将CO₂

气体注入可燃冰以实现甲烷(天然气中绝大多

数的成分)的开采及CO。

的封存。但是人们对于甲烷和二氧化碳笼型水合物性质的认识还存争议,尤其是对相关混合相的基本热力学及在不同压力和温度下的稳定性等问题更有待进一步解决。

中国科学院宁波材料技术与工程研究所核能材料工程实验室(筹)长期致力于笼型水合物的理论研究。该团队采用密度泛函理论系统研究了包括甲烷在内的多种气体分子在常见笼型水合物的水笼子中的吸附结构、主客体间相互作用及最佳气体占据数等微观性质,发现了各种气体分子在不同水笼子中稳定性和主客体间弱相互作用的内在机制,为气体分子笼型水合物的形成机制提供了新见解(J. Phys. Chem. A 2017, 121, 2620; J. Mol. Struct. 2018, 1153, 292)。水合物的力学性质是水合物的一个基本参数,对于水合物封存、水合物开采、运输以及储存具有很好的指导意义。研究发现I型H₂S水合物和I型SO。

水合物的力学性质相近,但由于分子极性关系与I型CH₄

水合物相差较大,为气体置换开采可燃冰力学评估提供了理论依据(Chem. Lett. 2017, 46, 1141)。

在前期的研究基础上,最近,该

团队进一步使用巨正则蒙特卡洛方法研究了 CH_4 、 CO_2 和其混合气体(CH_4+CO_2

) 在笼型水合物中的吸附

特性(如图)。根据气体的占据等温线和空间分布

情况,发现CH₄和CH₄+CO₂

气体的吸附行为可认为是单吸附位的Langmuir吸附;而CO₂

则明显表现为双吸附位吸附

。另外,根据模拟获得的占据度微观性质,进一步预测

出CH₄、CO₂和其混合气体笼型水合物的相图宏观性质。CH₄+CO₂水合物的相图处于CH₄和CO₂

水合物之间,说明了往CH4水合物中注入CO2气体将起稳定作用,提供了CO2促进CH4

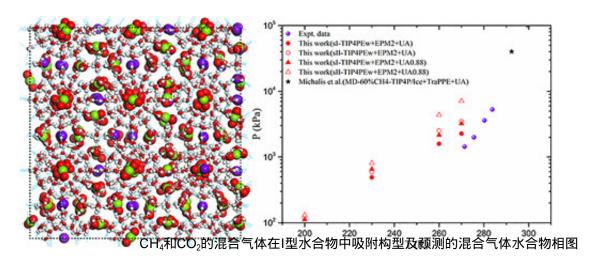
开采技术可行性的热力学依据。然而,鉴于烟气以二氧化碳为主的混合气体,该团队率先提出以烟气为注入气体置换 开采可燃冰来实现甲

烷开采和烟气封存的概念。从预测的气体

吸附性质和水合物相图来看,SO2,H2S,N2O和CS2

杂质气体也具有置换开采可燃冰中CHa

气体和同时实现温室气体封存以获得净化环境的能力。因此,从热力学来说,不必严格除去所有烟气杂质就能具有置换开采可燃冰功能,这将大大降低 CO_2 — CH_4 置换开采的成本,同时减少酸雨等环境污染。相关研究成果发表在J. Phys. Chem. B 2018, DOI: 10.1021/acs.jpcb.8b04551; J. Phys. Chem. C 2018,Just Accepted 等学术期刊上。


上述工作得到国家青年千人项目、王宽诚教育基金(rczx0800)、中科院交叉创新团队、国家自然科学基金青年项目(21707147)、国家自然科学基金面上项目(21875271)等的支持。

宁波材料所在可燃冰开发方面取得新进展

链接:www.china-nengyuan.com/tech/130320.html

来源:宁波材料技术与工程研究所

原文地址: http://www.china-nengyuan.com/tech/130320.html