链接: www.china-nengyuan.com/tech/130690.html

来源:新能源网 china-nengyuan.com

秸秆生物质燃料的生产及效益分析

何伟¹, 戚风², 王永良³

(1、黑龙江省东宁县环境保护局,黑龙江牡丹江157200;2、齐齐哈尔市环境监测中心站,黑龙江齐齐哈尔161005;3 、齐齐哈尔格林环保科技开发有限公司,黑龙江齐齐哈尔161005)

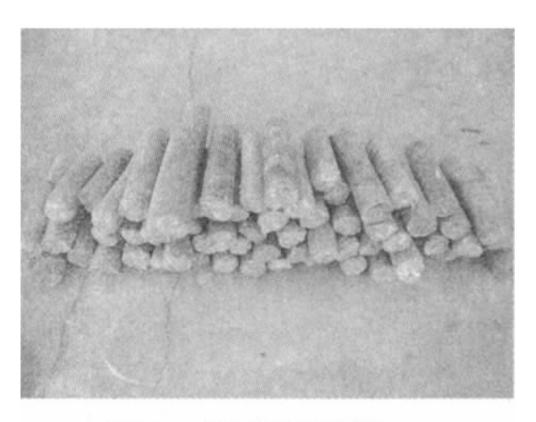
摘要:重点论述了秸秆生物质燃料的产品性能与生产工艺、生产设备、运行费用及效益。

我国目前生物质固化成型燃料技术普遍采用物理法成型工艺,并已进入小规模推广阶段。其基本的成型原理是:物料经外部热源加热或与设备的接触面强烈摩擦升温,当温度升到一定值(局部温度大于180度)时,开始失去弹性,同时分解出焦油物,在设备强压力或挤压力的作用下粘结成型。

1生物质燃料产品

1.1产品主要指标

目前,我国生物质燃料产品主要指标有全水分、灰分、挥发份、全硫、低位发热量等指标。主要参考执行DB11/T5 41 - 2008标准,各指标见表1。


项目	符号	单位	指标
全水分	Мt	%	≤ 15
灰分	Ad	%	≤ 10
挥发份	Vd	%	≥ 60
全硫	St, d	%	≤ 0.5
低位发热 Qnet, v, ar		MJ/kg	≥13.4

^{1.2}产品外观。

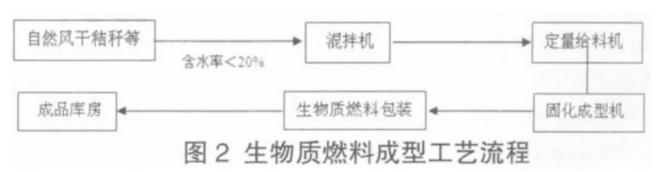
产品成型后外观见图1。

链接:www.china-nengyuan.com/tech/130690.html

来源:新能源网 china-nengyuan.com

图 1 成型燃料块

1.3其他性能。


生物质成型燃料密度可达到0.9-1.4t/cm ³

,体积缩小为堆积原料的1/30,热量值可达到3500-5500大卡之间,燃烧率达95%以上,燃后的灰份可做为优质的钾肥直接还田改良土壤。

2生物质燃料生产工艺流程

2.1工艺流程。

生物质燃料固化成型工艺流程见图2。

2.2工艺流程简要说明。

自然风干的秸秆含水率达到20%以下,可直接进入混料机;含水率达到适量的秸秆原料经秸秆粉碎机粉碎成5mm以下粉料后,进入混拌机中充分混匀(也可单独进入定量给料机,直接生产固化成型燃料块),混合物料经定量给料机定量地给固化成型机供料,经固化成型机固化成型的燃料块进入生物质燃料包装。

3主体设备

链接:www.china-nengyuan.com/tech/130690.html

来源:新能源网 china-nengyuan.com

3.1设备组成。

生物质燃料生产常采用成套压块机设备,由粉碎机、上料机、压缩成型机、控制柜、称重器及缝包机等部分组成,压块机由机座、进料口等部分组成。常用生物质燃料压块机设备型号:HYD-I。单台生物质燃料产量:1t/h。电机功率:30kw。

3.2设备性能。

铡切秸秆,其长度控制在5mm,含水量控制在15%~25%范围内,经输送机将物料送进压块机料口,物料被强制从平模中成块状挤出,冷却后(含水率不能超过14%)装袋包装。

4配套炉具方案

生物质成型燃料户用炊事炉的热效率可达到30%以上。配套炉具见图3。

图 3 配套炉具

5设备电耗

HYD-I型号生物质燃料压块机设备总电耗168.8kw。其中主机电耗90每台设备耗电量见表2。

链接:www.china-nengyuan.com/tech/130690.html

来源:新能源网 china-nengyuan.com

丰 つ	江水	由红	はい口	=
衣乙	设备	电 杜	同ル	衣

序号	设备名称	单台电耗(kw *h)	数量(台)	总耗电量(kw h)
1	主机	45	2	90
2	烘干机	22	2	44
3	粉碎机	13	2 -	26
4	传送带	2.2	4	8.8
	合 计			168.8

所有建设项目供电设施均按国家标准执行。负荷等级为三级,供电参数高压为10千伏,低压为380/220伏。电力变压器选用S11节能型电力变压器,高压开关柜选用XJN2型固定式高压开关柜,低压开关柜选用GGD型低压开关柜,功率因数在低压补偿采用GGJ1型低压电容器补偿柜,使功率因数自动保持在0.9以上。配电箱选用MMC-1型动力电箱,生产车间设控制按钮,对较大型的电机选用降压启动设备。车间配线采用电缆架敷设,采用导线空铁管沿地暗敷设,要结合情况决定。电线,电缆以铜芯为主。另外,为保证安全生产,按《建筑物防雷设计规范》GB50057-94,并结合本工程实际,生产车间等均按三类工业建筑物做防雷设计。生产车间及附属间在其电源入口处均需做一组复接地,接地电阻小于5欧姆,变电所内设接地网与变压器中性点一起与室外接地极连接,接地电阻为5欧姆以下。车间内电气设备的金属外壳用接地保护。

6运行成本

本项目日处理秸秆80t,日运行成本3128.14元,年运行成本93.8442万元(生产日按300d计)。明细见表3。处理吨秸秆成本为68.66元。

表 3 运行成本估算表						
项	目	数量	单位	单价	成本 (元 /d)	备 注
管理人	员工资	1	人		150.0	
员 工	工资	4	人	40 元/人. d	160. 0	按 1200 元/月·人计 算
电	费	124. 8	kw	0.85元/ kw·h	106. 08	
原料费	秸秆	80	t/d	30 元/t	2400	按生产日 300d 计
	其他辅 助材料				15	
原(辅)材		69, 94	t		100	按每天外运 24 24t, 内运原料 45.7t 计
不可报	5见费				20	
税	金				177.06	按 6%计
合	it				3128.14	

7效益分析

7.1经济效益。

年利用牛粪12.46万t/a、秸秆1250t/a,年产生物质燃料7300吨,吨产品售价按300元计,年销售收入219万元,去除运行成本(93.8442万元/a),年收益206.16万元。

链接:www.china-nengyuan.com/tech/130690.html

来源:新能源网 china-nengyuan.com

7.2社会效益。

通过本项目的实施,产生的社会效益主要反映在以下七个方面:一是为寒冷地区农业秸秆提供了技术方向。二是将秸秆作为一种资源加以利用,实现了污染物的减排和废物资源化利用;三是推动了区域经济、环境保护、生态环境的安全;四是推动了能源循环和经济循环;五是解决部分农村剩余劳动力的就业问题;六是推动了社会进步和资源、环境的可持续发展。

7.3环境效益。

年利用2.4万t/a秸秆,每年将少烧燃料煤5594t,向空气环境少排燃料煤燃烧废气5756万标m3,减排大气污染物227.1t。其中,烟尘174.8t,二氧化硫35.8t,氮氧化物16.5t。

原文地址: http://www.china-nengyuan.com/tech/130690.html