链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

马铃薯秸秆发酵制燃料乙醇预处理条件的优化研究

安玉民,王菊葵,魏文慧,陈思源

(宁夏师范学院化学化工学院,宁夏固原756000)

摘要:以马铃薯秸秆为原料,用不

同浓度的稀盐酸、稀硫酸、NaOH溶液、Na₂S溶液、NaHCO₂溶液、NH₃·H₂O和NaOH-H₂O₂

的混合溶液对马铃薯秸秆进行预处理;通过单因素和正交试验,分析预处理后秸秆中纤维素的含量、糖化率等。结果表明,对秸秆糖化率的影响由大到小为浓度、处理时间、固液比(质量与体积之比)、温度;以3%NaOH溶液和3%H₂O₂。

(体积比为2 1)混合液为处理试剂,在温度为60 ,处理时间为4d,固液比(质量与体积之比)为1 12为最佳的处理条件。

近年来,随着全球化石燃料日益短缺和环境污染加重,很多国家开展清洁能源和可再生能源的开发利用,其中,以农作物秸秆等木质纤维为原料生产燃料乙醇成为研究的焦点[1]。国内外一些公司建立了示范工厂,使木质纤维素生产燃料乙醇的技术初步实现了产业化。例如,加拿大logen公司建成用麦秸生产燃料乙醇的示范工厂,可加工麦秆50t/d[2]。美国的BC International公司以甘蔗残渣为原料,用稀硫酸水解的工艺[2],计划建成年产燃料乙醇7600万L的工厂。美国的Arkenol公司在南加州建立了一个中试工厂,以稻草为原料,用浓酸水解的工艺生产燃料乙醇[2]。华东理工大学等单位以废木屑为原料,以酸水解的工艺为主,建成生产燃料乙醇约600t/a的示范工厂[3]。文献显示,研究大多以玉米秸秆和小麦秸秆为原料生产燃料乙醇,而以马铃薯秸秆为原料的相关研究较少。马铃薯秸秆是我国北方马铃薯产区的主要农作物废弃物,如果能加以利用,既可消除环境隐患,又能为农民增加收入。

秸秆的成分以纤维素、半纤维素为主,其次是木质素、蛋白质、氨基酸、树脂、单宁、无机盐等,其中,木质素与半纤维素将纤维素分子紧紧包裹在里面,且木质素的结构复杂,难溶于水。研究表明,若不除掉木质素,在秸秆酸解和酶解时,纤维素的水解效率只有 $10\%\sim20\%$ [4]。因此,要提高秸秆中纤维素的酶解效率和"出酒率",需对原料进行预处理,首先要解决木质素的降解问题。目前,对玉米秸秆的预处理主要有物理方法、化学方法[5]和生物预处理法[6-7],其中,化学方法中的稀酸水解法[8]研究比较多。借鉴对玉米秸秆的预处理技术,笔者分别用稀盐酸、稀硫酸、NaOH溶液、NaOH-H₂O₂混合溶液、Na₂S溶液、NaHCO₃溶液、NH₃·H₂O对马铃薯秸秆进行预处理,测定处理后秸秆的糖化率,并对预处理条件进行优化,寻找最佳的处理条件。

1材料与仪器

原料取自宁夏固原市西吉县新营乡白城村。马铃薯秸秆经水洗后干燥,粉碎,过30~60目筛,备用。SE-202F电子天平(东莞市精工仪器厂);J2X-9076电热恒温鼓风干燥箱(上海博迅实业有限公司);SHB-IV循环水式真空泵(郑州长城科工贸有限公司);XMTD-204数显式电热恒温水浴锅(常州诺基仪器有限公司);VIS-723N紫外可见分光光度计(北京瑞利分析仪器公司);ZD-85恒温振荡器(常州国华电器有限公司)。

2实验

2.1试剂的预处理

取15g秸秆粉3份,分别加入250mL碘量瓶中,按m(固) V(液)=1 10分别加入0.5%,1%,2%的稀盐酸、稀硫酸、NaOH溶液、NaHCO₃溶液、NaOH-H $_2$ O(等浓度混合)混合液、Na $_2$ S溶液、NH $_3$ ·H $_2$

O,混合后用保鲜膜覆盖,再用橡皮筋密封,20 下放置5d。用碱中和至中性,抽滤。用自来水充分冲洗,将滤渣在80 烘干,测纤维素、半纤维素和木质素的损失率及糖化率。

2.2实验方法

2.2.1葡萄糖标准曲线的绘制 用二硝基水杨酸(DNS)法[9]测葡萄糖标准溶液的光密度D,绘制葡萄糖的标准曲线。 取经80 干燥2h的葡萄糖固体0.100g,加水溶解后定容于100mL容量瓶中。取6支25mL比色管,分别加入葡萄糖标准溶液(=1.0g/L)0,0.2,0.4,0.6,0.8,1.0mL,补充蒸馏水至2mL。再分别加入2.0mL的DNS试剂,摇匀,在沸水中加热5min,冷却后定容至25mL。取浓度最大的溶液,在=470~550nm进行波长扫描,选择D最大的波长作为测定波长,在该波长下测定混合体系的D,绘制葡萄糖溶液的标准曲线。

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

2.2.2纤维素、半纤维素和木质素的损失率 秸秆粉经预处理后,测定各种试剂处理前后样品中纤维素、半纤维素和木质素的质量分数[10],计算各种组分的损失率RL:

$$R_{\rm L} = (m_1 \times \omega_1 - m_2 \times \omega_2) / m_1 \times \omega_1 \times 100\%$$

式中: m_1 为处理前样品的质量(g); m_2 为处理后样品的质量(g); ω_1 为处理前样品中各组分的质量分

数; ω_2 为处理后样品中各组分的质量分数.

2.2.3秸秆的糖化率 在100mL具塞三角瓶中加入1g预处理秸秆粉和50mL 0.1mol/L HAc-

NaAc缓冲溶液(pH=4.8),再加入1mL 1%纤维素酶(15000U/g)溶液及2滴甲苯,放置恒温振荡器中,在60r/min、4 5 下反应48h。然后取0.4mL糖溶液于25mL比色管中,再加入0.8mLDNS试剂,摇匀,沸水中加热5min,冷却后定容至25mL。用分光光度计在 =490nm时测定混合体系的D。在同样的条件下,测定不加酶、各预处理后秸秆溶液的D。根据以下公式计算秸秆的糖化率RG:

$$R_{\rm G} = (\omega_2 - \omega_1) \times 0.9/\omega^* \times 100\%$$

式中:ω₁ 为未加酶预处理秸秆中葡萄糖的质量分数;ω₂ 为加酶后预处理秸秆中葡萄糖的质量分数;

ω^* 为预处理后秸秆中纤维素的质量分数.

2.2.4正交实验 根据预处理结果,选择处理后样品中纤维素、葡萄糖质量分数最高的试剂,进行以处理试剂的浓度、处理温度、处理时间、固液比(质量与体积之比)为因素的 L_{16} (4^4)正交实验,筛选最佳的预处理条件。

3结果与分析

3.1预处理后样品中各组分的质量分数及损失率

预处理前,马铃薯秸秆中纤维素、半纤维素和木质素的平均质量分数分别为35.35%,11.60%,26.45%(表1)。预处理后,纤维素损失率最大的是用 $NH_3\cdot H_2$

O处理后的样品,平均损失率为62.33%,损失率

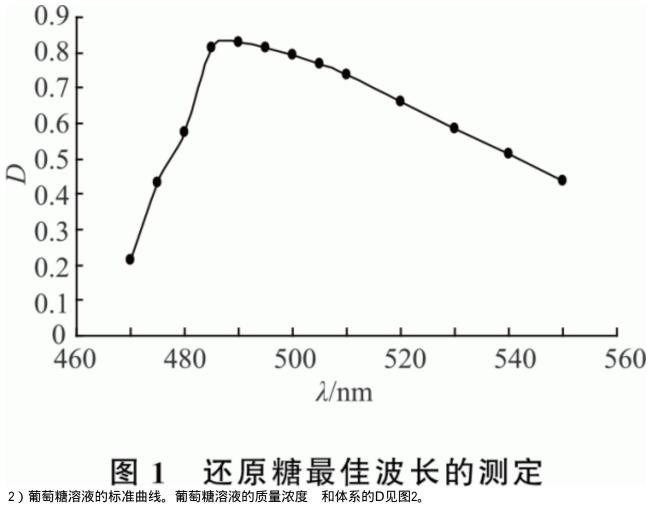
最小的是用NaOH-H₂O₂

混合溶液处理后的样品,平均损失率为6.84%;半纤维素损失率最大的是用NaOH溶液处理后的样品,平均损失率为3 6.3%;木质素损失率最大的是用NaOH-H₂O₂混合溶液处理后的样品,平均损失率为54.66%。

链接:www.china-nengyuan.com/tech/178639.html

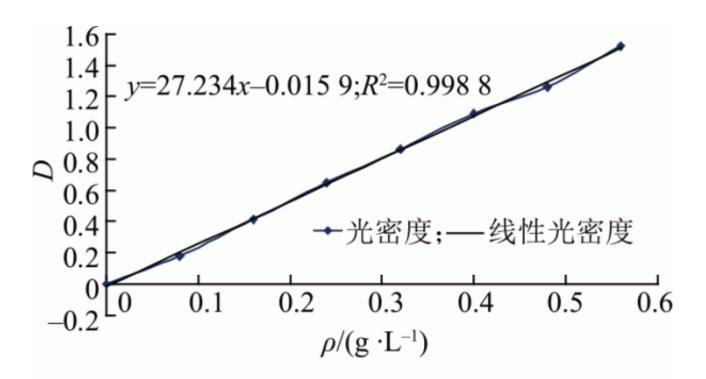
来源:宁夏大学学报

表 1 不同试剂处理后各样品中各组分的质量分数及损失率									
处理试剂	w/%	m_1/g	m_z/g	$w_1'/\%$	$R_{\rm L1}/\%$	$w_z^\prime/\%$	$R_{\rm L2}/\%$	$w_1'/\%$	$R_{1.3} / \%$
未处理	_	13.68	13.68	35, 35	0	11,60	0	26, 45	0
Na ₂ S溶液	0.5	13.68	10.52	40,11	12.73	14.64	2,95	20.08	41.62
	1.0	13.68	10.96	39.17	11.23	10.06	30.52	18.92	42.71
	2,0	13,68	9, 13	39,41	25,58	9,38	46,03	19,39	51,07
NaOH-H ₂ O ₂ 混合溶液	0.5	13.68	8.97	53, 38	1.02	11.62	34.32	21.12	47.67
	1.0	13.68	8, 92	51, 43	5. 18	13, 26	25.46	17.65	56.50
	2,0	13.68	8,35	49,63	14.33	11,23	40.91	17.43	59.80
	0,5	13.68	9, 48	30, 32	40.55	10,98	34, 41	20,69	45.79
NaOH 溶液	1,0	13.68	9, 23	25,76	50.83	11,21	34.80	17.38	55.67
rir rix	2.0	13.68	10.13	23,02	51.80	9,45	39.68	20.40	42.92
V 1100	0.5	13.68	12.11	22.37	44.00	15.76	3.96	18.74	40.12
NaHCO ₃ 溶液	1.0	13.68	10,27	20,21	57.09	13,93	9.85	21,00	40,41
	2.0	13.68	9.86	25,42	48.17	15.08	6.30	19.73	46,23
	0.5	13.68	11.14	14.08	67.58	13.02	8.60	19.96	38.58
$\mathrm{NH_3} \bullet \mathrm{H_2O}$	1,0	13,68	11.39	19,45	54, 17	7,38	47.03	17,57	44.69
	2,0	13,68	9,96	16,87	65, 25	13.06	18,03	19.65	45,92
48 II CO	0.5	13.68	11.09	38.06	12.73	13.61	4.89	19.06	41.57
稀 H ₂ SO ₄ 溶液	1.0	13.68	12.01	33, 57	16.60	12.02	9.03	20.25	38.36
	2,0	13,68	11,85	37,80	7.34	13,60	2.90	19,29	39,48
#6 TTC!	0.5	13.68	11.00	37.22	15.32	15.51	1.09	16.96	48.44
稀 HCl 溶液	1.0	13.68	10.19	39.45	16.91	12.49	26.33	16.54	53.45
	2.0	13,68	7,33	27,75	57.92	16,81	22, 35	19,46	60.56


注:w 为处理试剂的质量分数; w_1' , w_2' , w_3' 分别为处理后样品中纤维素、半纤维素、木质素的质量分数。

^{3.2}预处理后样品的糖化率

¹⁾最佳测定波长的确定。取56g/L的葡萄糖标准溶液在分光光度计上进行波长扫描,从 =470nm开始,每隔5nm扫描一次,记录溶液的D(图1)。由图1可知,还原糖在 =490nm处有最大的吸收。


链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

图 2 葡萄糖标准溶液的光密度曲线

3) 预处理

后各样品的糖化率。预处

理后各样品加酶前后溶液的D及RG见表2。由表2可

知,用NaOH- H_2O_2

混合溶

液处理后,样

品中纤维素的质量分数和加

酶水解后的还原糖质量分数最高。尽管糖化率最高的是

用NH₃·H₂O处理后样品,但用NH₃·H₂

O处理后样品中纤维素的质量分数比用NaOH-H2O2

混合溶液处理后的

低很多,且还原糖的质量分数也低。

因此,综合考虑各种因素,选择用NaOH- H_2O_2 混合溶液作为处理试剂进行下一步实验。

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

表 2 不同试剂理后样品的糖化率						
处理试剂	w /%	w_2 / $\frac{0}{0}$	w_1 / $\frac{0}{0}$	w * /%	$R_{ m G}$ / $\%$	
未处理	_	9.84	3.59	35.35	15.93	
	0.5	12.98	0.26	40.11	28.55	
Na ₂ S 溶液	1.0	12.77	1.48	39.17	25.95	
	2.0	12.75	0.27	39.41	28.50	
	0.5	15.34	0.47	53.38	25.07	
NaOH-H ₂ O ₂ 混合溶液	1.0	15.05	0.39	51.43	25.66	
	2.0	13.51	0.28	49.63	24.00	
	0.5	13.39	0.31	30.32	38.80	
NaOH 溶液	1.0	11.99	0.43	25.76	40.38	
	2.0	15.19	0.48	23.02	57.50	
	0.5	11.84	0.37	22.37	46.16	
NaHCO ₃ 溶液	1.0	10.66	0.34	20.21	45.98	
	2.0	12.70	0.52	25.42	43.12	
	0.5	13.15	0.28	14.08	82.27	
$\mathrm{NH_3}$ • $\mathrm{H_2O}$	1.0	13.54	0.47	19.45	60.47	
	2.0	11.88	0.30	16.87	61.77	
	0.5	7.33	0.53	38.06	16.10	
稀 H ₂ SO ₄ 溶液	1.0	7.58	0.71	33.57	18.40	
	2.0	8.59	0.35	37.80	19.62	
	0.5	8.13	0.59	37.22	18.22	
稀 HCl 溶液	1.0	11.17	0.46	39.45	24.43	
	2.0	11.06	0.71	27.75	33.56	

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

3.3正交实验

根据上述预处理实验,选择用NaOH-H 2O2

混合溶液处理马铃薯秸秆。以混合溶液的质量分数w(A)、处理温度T(B)、处理时间t(C)、固液比(质量与体积之比,D)为因素,设计正交实验,结果见表3~4。

	表 3	表 3 正交实验因素水平表				
实验	A	В	C	D		
1	0.5	30	3	8		
2	1.0	40	4	10		
3	2.0	50	5	12		
4	3.0	60	6	14		

链接:www.china-nengyuan.com/tech/178639.html 来源:宁夏大学学报

表 4							
实验	A	В	C	D	$R_{ m G}/\%$		
1	0.5	30	3	8	27.54		
2	0.5	40	4	10	27.15		
3	0.5	50	5	12	23.61		
4	0.5	60	6	14	20.11		
5	1	30	4	12	34.13		
6	1	40	3	14	27.55		
7	1	50	6	8	28.77		
8	1	60	5	10	34.62		
9	2	30	5	14	28.68		
10	2	40	6	12	35.67		
11	2	50	3	10	37.31		
12	2	60	4	8	35.80		
13	3	30	6	10	32.42		
14	3	40	5	8	34.41		
15	3	50	4	14	40.46		
16	3	60	3	12	40.06		
K_1	98.40	122.7	132.5	126.5			
K_2	125.1	124.8	137.5	131.5			
K_3	137.4	130.2	121.3	133.5			
K_4	147.4	130.6	117.0	116.8			
k_1	24.60	30.69	33.12	31.60			
k_2	31.27	31.20	34.38	32.90			
k_3	34.36	32.54	30.33	33.4			
k_4	36.84	32.65	29.25	29.20			
R	12.24	1.955	5.142	4.168			

注:混合体系中 V(NaOH):V(H₂O₂)=2:1.

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

由表4可知,对糖化率的影响由大到小依次为处理试剂的浓度、处理时间、固液比(质量与体积之比)、处理温度,即最佳的实验条件为 $A_4C_2D_3B_4$ 。

4结论

虽然酸解法在玉米秸秆的预处理中运用较广,但碱法处理的成本低,对环境的污染小。考虑诸多因素,在该实验条件下,对马铃薯秸秆的最佳预处理条件:以V

(3%NaOH溶液) V(3%H₂O₂

溶液)=2 1为处理试剂,处理温度T=60 、固液比(m(固) V(液))=1 12、处理时间t=4d,秸秆的糖化率在40%以上。

参考文献:

- [1] MIDILLI A, DINCER I, AY M. Green energy strategies for sustainable development [J]. Energy Policy, 2006,34(18):3623-3633.
- [2] 闫德冉,陈伟红,张丽莉,等. 纤维乙醇研究现状及展望[J]. 生物加工过程,2007,5(1):9-13.
- [3] 张素平,颜涌捷,任铮伟,等. 纤维素制取乙醇技术 [J]. 化学进展,2007,19(7):1129-1133.
- [4] YANG X, CHEN H. GAO H, et al. Bioconversion of corn straw by coupling ensiling and solid-state fermentation [J]. Bioresourse Technol, 2001, 78(3):277-280.

链接:www.china-nengyuan.com/tech/178639.html

来源:宁夏大学学报

[5] 马晶,张鉴达,申哲民. 秸秆生产燃料乙醇的研究进展 [J]. 环境监控与预警,2010,2(3):45-49.

- [6] 赵建.纤维质原料预处理技术[J]. 生物产业技术,2008 (1):66-71.
- [7] SONG Andong, WU Kun, XIE Hui, et al. Biodegradation of straw stalk and experiment of ethanol fermentation [J]. Wuhan University Journal of Natural Sciences, 2007, 12(2):343-348.
- [8] 宋安东,任天宝,谢慧,等.化学预处理对玉米秸秆酶解糖化效果的影响[J].化学与生物工程,2006,23(8):31-33.
- [9] 李日强,辛小云,刘继青,等.天然秸秆纤维素分解菌的 分离选育[J].上海环境科学,2002,21(1):8-11.
- [10] 安玉民,王菊葵,黄烨,等. 马铃薯秸秆中纤维素与半 纤维素含量的测定[J]. 现代农业科技,2016(17): 159-160.

原文地址: http://www.china-nengyuan.com/tech/178639.html