简介
沼气发酵又称为厌氧消化、厌氧发酵,是指有机物质(如人畜家禽粪便、秸秆、杂草等)在一定的水分、温度和厌氧条件下,通过各类微生物的分解代谢,最终形成甲烷和二氧化碳等可燃性混合气体(沼气)的过程。
定义
自然界中绿色植物经光合作用合成碳水化合物,主要形成糖、淀粉、纤维素等。纤维素合成的数量最大,贮量也最多,是地球上很难被微生物分解的物质。在好氧条件下,纤维素可被少数微生物氧化分解,最终产生CO2和H2O。目前所知绿色木霉是分解纤维素最强的微生物。
(C6H10O5)n+6nO2→6nCO2+5nH2O
在厌氧条件下,纤维素经厌氧微生物发酵作用最终产生CH4。
在自然界形成甲烷的地方主要有沼泽地、水稻田、井地、河湖淤泥及反刍动物瘤胃。反刍动物瘤胃具有产甲烷的良好条件,所以瘤胃被称为产甲烷的天然高效能的连续发酵罐。
特点
在沼气发酵过程中,不产甲烷细菌和产甲烷细菌之间,相互依赖,互为对方创造与维持生命活动所需要的良好环境条件,但它们之间又互相制约,在发酵过程中总处于平衡状态。它们之间的主要关系表现下列几方面:
提供基质
①不产甲烷细菌为产甲烷细菌提供生长和产甲烷所需要的基质
不产甲烷细菌可把各种复杂的有机物,如碳水化合物、脂肪、蛋白质等厌氧分解生成H2、CO2、NH3、VFA、甲醇、丙酸、丁酸等,丙酸、丁酸还可被氢细菌和乙酸细菌分解转化成H2、CO2和乙酸,为甲烷细菌提供了合成细胞质和形成甲烷的碳前体,电子供体——氢供体和氮源,使甲烷细菌利用这些物质最终形成甲烷。
创造条件
②不产甲烷细菌为产甲烷细菌创造了适宜的氧化还原电位条件
在沼气发酵初期,由于加料过程中使空气带入发酵装置,液体原料里也有溶解氧,这显然对甲烷细菌是很有害的。氧的去除需要依赖不产甲烷细菌的氧化能力把氧用掉。因此,降低了氧化还原电位。在发酵装置中,各种厌氧性微生物如纤维素分解菌、硫酸盐还原细菌、硝酸盐还原细菌、产氨细菌、产乙酸细菌等,对氧化还原电位的适应性也各不相同,通过这些细菌有顺序地交替生长活动,使发酵液料中氧化还原电位不断下降,逐步为甲烷细菌的生长创造了适宜的氧化还原电位条件,使甲烷细菌能很好的生长。
清除有害物质
③不产甲烷细菌为产甲烷细菌清除了有害物质
以工业废水或废弃物为发酵原料时,原料里可能含酚类、***、苯甲酸、长链脂肪酸和一些重金属离子等。这些物质对甲烷细菌是有毒害作用的,但不产甲烷细菌中有许多种能裂解苯环,有些细菌还能以***作碳源和能源,也有的细菌能分解长链脂肪酸生成乙酸。这些作用不仅解除了对甲烷细菌的毒害,而且又给甲烷细菌提供了养料。此外有些不产甲烷细菌的代谢产物硫化氢,可以和一些重金属离子作用,生成不溶性的金属硫化物,从而解除了一些重金属离子的毒害作用。
H2S+Cu2+→CuS↓+2H+
H2S+pH2+→PbS↓+2H+
H2S浓度也不能过高,当H2S大于150×10-6,对甲烷细菌也有毒害。
解除抑制
④产甲烷细菌又为不产甲烷细菌的生化反应解除了反馈抑制
不产甲烷细菌的发酵产物可以抑制产氢细菌的继续产氢,酸的积累可以抑制产酸细菌的继续产酸。当厌氧消化器中乙酸浓度超过3×10-3时,就会产生酸化,使厌氧消化不能很好的进行下去,会使沼气发酵失败。要维持良好的厌氧消化效果,乙酸浓度在0.3×10-3左右较好。在正常沼气发酵工程系统中,产甲烷细菌能连续不断地利用不产甲烷细菌产生的氢、乙酸、CO2等合成甲烷,不致有氢和酸的积累,因此解除了不产甲烷细菌产生的反馈抑制,使不产甲烷细菌就能继续正常生活,又为甲烷细菌提供了合成甲烷的碳前体。
维持pH值
⑤不产甲烷细菌和产甲烷细菌共同维持环境中适宜的pH值
在沼气发酵初期,不产甲烷细菌首先降解原料中的糖类、淀粉等产生大量的有机酸、CO2,CO2又能部分溶于水形成碳酸,使发酵液料中pH值明显下降。但是不产甲烷细菌类群中还有一类细菌叫氨化细菌,能迅速分解蛋白质产生氨,氨可中和部分酸。
|